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We have reported successful observations of co-faulting Earth’s magnetic field changes[1]. To develop a new system for
super-early warning of destructive earthquakes, these observation results are very important. On the other hand, these obser
tion results suggested that the geomagnetic variation signals are very small. In the result at lwate-Miyagi Nairiku Earthquake
the magnetic fields began to increase almost simultaneously with the onset of the earthquake rupture. This amount of change w
approximately some hundreds pT. As another observation result, at the lwaki-observation site in Fukushima, we also succes
fully observed a similar signal by our high-resolution geomagnetic observation system using HTS-SQUID magnetometer. This
amount of change was approximately 50 pT.

To detect small co-faulting Earth’s magnetic signals for developing new system for a super-early warning of destructive earth-
guakes, a signal processing method is very meaningful. Then we presented a nonlinear processing method of geomagne
estimation by the deep neural network (DNN) using stacked-autoencoder[2]. In this study to improve the precision of estimation
we employ some estimation methods using the deep-learning technology to solve our problem. We perform an evaluation an
report an effective estimation method using deep learning in this presentation.

[1] Okubo et al., EPSL,2011.
[2] Katori et al., JpGU Meeting, 2016.
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