R005-03

SuperDARN 北海道-陸別 HF レーダーによって観測された夏季中間圏エコーの高度 特性

津屋 太志 [1]; 西谷 望 [2]; 小川 忠彦 [3]; 堤 雅基 [4]; 行松 彰 [5] [1] 名大 STE 研; [2] 名大 STE 研; [3] NICT; [4] 極地研; [5] 国立極地研究所/総研大

Study of altitude characteristics of Mesosphere Summer Echoes observed by the SuperDARN Hokkaido HF radar

Taishi Tsuya[1]; Nozomu Nishitani[2]; Tadahiko Ogawa[3]; Masaki Tsutsumi[4]; Akira Sessai Yukimatu[5] [1] STELAB, Nagoya Univ.; [2] STELAB, Nagoya Univ.; [3] NICT; [4] NIPR; [5] NIPR/SOKENDAI

The mesopause, located around 80 to 100 km altitude, is where the neutral temperature is lowest in the earth's atmosphere. The mesopause temperature is largely affected by the global meridional circulation in the middle atmosphere, and mesopause temperature is more variable than lower atmosphere temperature. Therefore study of the mesopause region is very important for understanding environmental changes including global warming.

When the mesopause neutral temperature goes below 150 K, heavy charged ice aerosol particles are generated, which reduce electron diffusivity. Neutral air turbulence in combination with the reduced electron diffusivity lead to the creation of structures at half-wave scales which backscatter radio waves (Rapp and Luebken, ACP, 2004). As a result, the echoes backscattered at mesopause are frequently observed in summer in the polar region as Polar Mesosphere Summer Echoes (PMSEs). In recent years mesosphere echoes are observed not only in the polar region but also at midlatitudes as Mesosphere Summer Echoes (MSEs) (Ogawa et al., JASTP, 2011).

In this study, we make statistical analysis of MSEs observed by the SuperDARN Hokkaido HF radar at midlatitude (geographic latitude: +43.53 N deg). We make use of the criteria for identifying MSEs adopted by Ogawa et al. (EPS, 2013) which performed event study of MSE using the SuperDARN Hokkaido radar. As a result, MSEs are observed more frequently in the daytime (07 to 18 LT) and summer (in particular June and July) than other time and seasons, which is similar to PMSEs reported by Hosokawa et al. (GRL, 2005) using the high latitude SuperDARN radars and NLC reported by Gerding et al. (GRL, 2013) using midlatitude lidar.

MSEs are often contaminated with echoes from the Es layer. In order to identify MSEs exactly and understand the generation mechanisms of MSEs at midlatitude, it is important to obtain neutral wind information near the mesopause because some MSE structures might be transported from higher latitudes by neutral winds (Singer et al., ASR, 2003), which affect the Doppler velocity of MSEs. If the Doppler velocity of MSEs consists with neutral wind, it becomes credible that the echoes are MSEs. In this aspect we can set more appropriate criterion for identifying MSEs by taking into account altitude distribution of neutral winds, which can be obtained by using meteor echoes observed by the radar. In order to estimate altitude distribution of MSEs and neutral winds, we use the technique employed by Yukimatu and Tsutsumi (GRL, 2002) and Tsutsumi et al. (Radio Sci., 2009) which obtain neutral wind information from meteor echoes using the SuperDARN radars. Details of analysis will be presented.

中間圏界面は高度 80 km から 100 km 付近に存在する領域であり、地球大気の中でも最も温度が低い領域である。中間圏界面の温度は下層大気を含む大規模な子午面循環 (南北循環) の影響を受けている。従って中間圏界面の研究は、地球温暖化を含めた環境変動を理解する上で非常に重要である。

中間圏界面温度が極低温 (150 K 以下) となった時、帯電した重い氷エアロゾルが発生し、そのイオンによって電子拡散が弱められる。中性大気の乱流が電子拡散の減少と相まってレーダーの半波長スケールの構造をつくり、それらの構造が電波を後方散乱する (Rapp and Luebken, ACP, 2004)。その結果、中間圏界面で後方散乱されたエコーが極域の夏季において Polar Mesosphere Summer Echoes (PMSEs) としてしばしば観測される。近年では、極域だけに限らず中緯度においても中間圏エコーが Mesosphere Summer Echoes (MSEs) として観測されている (Ogawa et al., JASTP, 2011)。

本研究では、中緯度の北海道-陸別 HF レーダー (地理緯度: 北緯 43.53 度) によって観測された MSEs の統計解析を行った。統計解析を行うにあたり、北海道-陸別 HF レーダーを用いた MSEs のイベント解析である Ogawa et al. (EPS, 2013) を参考に MSEs の判別条件を決定し、夏季中間圏エコーを同定した。その結果、同定したエコーに、昼間 (7 時から 18 時)、また夏季 (特に 6 月、7 月) に多く観測されるという特性が得られた。これは極域で PMSEs の統計解析を行った Hosokawa et al. (GRL, 2005) で報告された PMSEs の特性と一致する結果となった。また中緯度において NLC のライダー観測を行った Gerding et al. (GRL, 2013) で報告された NLC の特性とも一致する結果となった。

北海道の夏季日中では Es 層からのエコーと MSEs が混在する場合があり、MSEs を同定することが難しい場合がある。より正確に MSEs を同定するため、また中緯度における MSEs の発生機構を理解するためには、エコーの高度分布を得ること、また中間圏界面付近の中性風の情報を得ることが重要である。

そのため、本研究では流星エコーを用いた。流星エコーは高度 70 km から 110 km に分布し、中性風によって運ばれる。Yukimatu and Tsutsumi (GRL, 2002) 及び Tsutsumi et al. (Radio Sci., 2009) では、SuperDARN レーダーを用いて流星エコーから中性風速度の情報を得た。本研究でも同様の手法を用いて、流星エコー及び中性風速度の高度分布を求め、同

定したエコーの高度及びドップラー速度との比較を試みている。

流星エコーの高度領域 (70 km から 110 km) と MSEs の高度領域 (80 km から 100 km) は近いため、本研究では流星エコーと同定したエコーを相対的に比較した。その結果、同定したエコーの高度分布は流星エコーの高度分布よりも低いという結果を得た。この結果は、MSEs を同定する判別条件の正確さをサポートするものである。

また MSEs 構造の一部は中性風によって高緯度から運ばれるとされる (Singer et al., ASR, 2003) ため、流星エコーから 求まる中性風速度と MSEs のドップラー速度に整合性が確認できれば、エコーが MSEs であるという信憑性が高まる。そのため中性風速度の高度分布とエコーのドップラー速度を比較することによって、より適切な MSEs の判別条件を設定 することが可能であると考えられる。判別条件により同定したエコーのドップラー速度と中性風速度との比較結果については講演で述べる。