How O+ Becomes a Significant Fraction of the Storm-Time Ring Current

Lynn M. Kistler[1]; A. M. Menz[2]; C. G. Mouikis[2][1] ISEOS, University of New Hampshire; [2] University of New Hampshire

During storm times, the pressure that creates the storm-time ring current in the inner magnetosphere can be predominantly O_+ . This is surprising, as the immediate source for the ring current is the nightside plasma sheet, and O_+ is usually not the dominant species in the plasma sheet. In this talk we use Van Allen Probes and Cluster data to examine the processes that lead to this heavy ion dominance. The factors that contribute include the different transport paths of O_+ and H_+ from the cusp region, which brings more energetic O_+ than H_+ into the near earth plasma sheet, the source spectrum in the near-earth plasma sheet, which tends to be harder for O_+ than for H_+ , and the time dependence of the O_+ in the plasma sheet. The plasma sheet O_+ tends to be high towards the beginning of the storm, when the convection is largest, bringing it into the inner magnetosphere. All of these processes play a role, and which is most important is a topic which can be addressed by the multi-spacecraft combination of Van Allen Probes and ARASE.