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Instinct geomagnetic field is thought to be sustained by a dynamo action of fluid iron alloy convection in the outer core.
Recent studies suggest that the solid inner core was nucleated about 1 billion years ago and after that it has grown to tt
present size from thermochemical calculations [e.g., O’'Rourke and Stevenson, 2016]. There is a probability that change of th
convective-rigion geometry influenced on the outer core convection, but geodynamo has sustained over 3.5 billion years fror
paleomagnetic analyses [e.g., Biggin et al., 2015]. It is important to reveal properties of dynamo in a rotating spherical shell
corresponding to the past Earth in the perspective of understanding magnetohydrodynamics and elucidating the environment
the past Earth. Because there are a few studies, in which Heimpel et al. (2005) discussed dynamo onset in the various inn
core radii, geodynamo different from the current inner core size has not been fully understood. In the present study, using
numerical dynamo code Calypso [Matsui et al., 2014], we carried out non-magnetic thermal and dynamo simulations in three
different aspect ratios:;fr, = 0.15, 0.25, and 0.35 (the present value), whei@nd r, are the inner core and outer core radii,
respectively. In order to quantify a convection structure, we calculated a length scale of flow in azimuthal direction [cf. King and
Buffett, 2013]. As a result, it is revealed that in both cases/of  0.25 and 0.35, the dominant length scale in MHD cases is the
same as that in non-magnetic cases in the range of Rayleigh number where dynamo is not sustaingd, £Rd&al.9 Ra,;,
inr;/r, =0.25 and 1.0 Ra;; <Ra<1.3 Ra,;; in r;/r, = 0.35. Ra is the Rayleigh number and.Rais the critical Rayleigh
number. It is also found that the scale of structure in non-magnetic cases gets larger than that in the Ra range of non-sustain
dynamo cases, but that in MHD cases is comparable to non-sustained dynamo cases in the range of Rayleigh number whe
dynamo start to be sustained, in both cases of aspect ratios, 2.2 RRa<2.8 Ra,.;; inr;/r, =0.25 and 1.5 Ra;; <Ra<2.0
Ra..;; in r;/r, = 0.35. Itis specifically shown that the dominant mode in thermal convection is changed fromm =2tom=1in
r;/r,=0.25 and from m = 4 to m = 3 inkr,=0.35 with Ra increasing. On the other hand, it is also shown that the dominant mode
in dynamo cases convection remains for m = 2;in,r= 0.25 and m = 4 inr, = 0.35. These results show that the mode of
maximum growth rate depends on Ra and initial magnetic field. In order to understand the structure of convection, it is needed t
investigate what modes are easy to grow. It is known that the critical Rayleigh number in a rotating spherical shell is a function
of the spherical harmonic degree, the aspect ratio, and the Ekman number [e.g., Bisshop, 1958; Chandrasekhar, 1961; Robe
1968; Busse, 1970]. We also compare the results of our simulations in thermal convection with these studies.
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