R005-53 Zoom meeting C : 11/3 AM1 (9:00-10:30) 10:00-10:15

地磁気静穏時に発生した pseudo breakup における熱圏応答のイベント解析

#大山 伸一郎¹¹²¹³,新堀 淳樹¹),小川 泰信³,Kellinsalmi Mirjam⁴,Raita Tero⁵,Rietveld Michael⁶,Aikio Anita²,Heikki Vanhamaki²,塩川 和夫¹),Virtanen Ilkka²,Cai Lei⁷,Workayehu Abiyot²,Pedersen Marcus²,Kauristie Kirsti⁴,津田 卓雄⁸,Kozelov Boris⁹,Demekhov Andrei⁹,Yahnin Alexander⁹,土屋 史紀¹⁰,熊本 篤志¹⁰,笠原 禎也¹¹,松岡 彩子¹²,小路 真史¹,寺本 万里子¹³ ¹¹名大 ISEE,²⁾オウル大学,³国立極地研究所,⁴⁾フィンランド気象研究所,⁵⁾オウル大学ソダンキラ地球物理観測所,⁶⁾欧州 非干渉散乱レーダー協会,⁷⁾スウェーデン王立工科大学,⁸⁾電気通信大学,⁹⁾ロシア極地地球物理学研究所,¹⁰⁾東北大学,¹¹⁾ 金沢大学,¹²⁾京都大学,¹³⁾九州工業大学

An event study of the thermospheric response at a pseudo breakup during geomagnetically quiet conditions

[#]Shin-ichiro Oyama^{1),2),3)}, Atsuki Shinbori¹⁾, Yasunobu Ogawa³⁾, Mirjam Kellinsalmi⁴⁾, Tero Raita⁵⁾, Michael Rietveld⁶⁾, Aikio Anita²⁾, Heikki Vanhamaki²⁾, Kazuo Shiokawa¹⁾, Ilkka Virtanen²⁾, Lei Cai⁷⁾, Abiyot Workayehu²⁾, Marcus Pedersen²⁾, Kirsti Kauristie⁴⁾, Takuo Tsuda⁸⁾, Boris Kozelov⁹⁾, Andrei Demekhov⁹⁾, Alexander Yahnin⁹⁾, Fuminori Tsuchiya¹⁰⁾, Atsushi Kumamoto¹⁰⁾, Yoshiya Kasahara¹¹⁾, Ayako Matsuoka¹²⁾, Masafumi Shoji¹⁾, Mariko Teramoto¹³⁾

¹⁾ISEE, Nagoya Univ.,²⁾Space Physics and Astronomy Research Unit, University of Oulu,³⁾National Institute of Polar Research,⁴⁾Finnish Meteorological Institute,⁵⁾Sodankyla Geophysical Observatory, University of Oulu,⁶⁾EISCAT,⁷⁾KTH Royal Institute of Technology,⁸⁾The University of Electro-Communications,⁹⁾Polar Geophysical Institute,¹⁰⁾Tohoku University,¹¹⁾Kanazawa University,¹²⁾Kyoto University,¹³⁾Kyushu Institute of Technology

A geomagnetically quiet-time (Kp=0+) pseudo breakup event on 20 February 2018 was investigated to examine the Magnetosphere-Ionosphere-Thermosphere coupling at auroral to subauroral latitudes in the Scandinavian sector using multiple ground-based instruments and spacecraft. Coinciding with appearance of the pseudo breakup at 71-73 MLat at approximately 21 MLT, a red arc emerged at the ionospheric trough minimum located at 68 MLat (L?7.1). The ionospheric trough was scanned meridionally by the Swarm A and C spacecraft, and the measurements clearly showed an electron temperature peak (~15,000 K) at the trough minimum. We concluded that causality to produce the red arc was the heat flux transferred from the plasmapause similar to generation of the stable auroral red (SAR) arc. Different from the SAR arc, the red arc was found at the onset time. The red arc may represent a moment of SAR arc birth, which is generally masked by bright dynamic aurorae. The new feature is named the ephemeral auroral red (EAR) arc. Ion velocity measured by the Swarm A showed westward flow of about 1700 m/s in the trough but at the equator side slope and the flow speed at the trough minimum was almost 0 m/s. This suggests that the polarization electric field may not have been spatially uniform throughout the trough. A Dynasonde deployed at Tromsoe (67 MLat, which is located near the equatorward trough edge) measured westward turning of the F-region ion velocity at the pseudo breakup. The collocated Fabry-Perot interferometer (FPI, 630.0 nm) also detected westward wind acceleration following the ion velocity change with almost no delay but with some relative speed. For an approximately 20-min interval after the pseudo breakup, **Un**?**Vi** was negative, which suggests that the mechanical energy of the neutral particles was transferred to the plasma in the ionosphere, contributing to the Joule heating rate at a moment of sudden magnetospheric electric field change at the pseudo breakup. Here **Un** and **Vi** are the neutral wind and ion velocity, respectively. However, after this interval, **Un?Vi** turned to be positive. The Dynasonde-FPI comparison suggests that the thermospheric wind was prompt to respond to the substorm-induced ion velocity change even in the low plasma density trough, and that inertia of the neutral particle plays a partial role to generate the thermal energy.