R006-57 Zoom meeting B : 11/4 AM2 (10:45-12:30) 11:30-11:45

Study of equatorward detachment of auroral arc from the oval using ground-space observations and the BATSRUS+CRCM model

#YADAV SNEHA¹⁾,塩川 和夫¹⁾,大山 伸一郎¹⁾,稲葉 裕大¹⁾,高橋 直子²⁾,関 華奈子²⁾,風間 洋一³⁾,Wang Shiang-Yu³⁾,浅村 和史⁴⁾,笠原 慧²⁾,横田 勝一郎⁵⁾,堀 智昭¹⁾,桂華 邦裕²⁾,Kasaba Akimasa⁶⁾,土屋 史紀⁶⁾,熊 本 篤志⁶⁾,小路 真史¹⁾,笠原 禎也⁷⁾,松岡 彩子⁴⁾,田 采祐¹⁾,今城 峻¹⁾,三好 由純¹⁾,篠原 育⁴⁾ ¹⁾Nagoya University,²⁾University of Tokyo,³⁾National Cheng Kung University,⁴⁾Japan Aerospace Exploration Agency,⁵⁾Osaka University,⁶⁾Tohoku University,⁷⁾Kanazawa University

Study of an equatorward detachment of auroral arc from the oval using ground-space observations and the BATSRUS+CRCM model

#SNEHA YADAV¹), Kazuo Shiokawa¹), Shin-ichiro Oyama¹), Yudai Inaba¹), Naoko Takahashi²), Kanako Seki²), Yoichi Kazama³), Shiang-Yu Wang³), Kazushi Asamura⁴), Satoshi Kasahara²), Shoichiro Yokota⁵), Tomoaki Hori¹), Kunihiro Keika²), Akimasa Kasaba⁶), Fuminori Tsuchiya⁶), Atsushi Kumamoto⁶), Masafumi Shoji¹), Yoshiya Kasahara⁷), Ayako Matsuoka⁴), Jun ChaeWoo¹), Shun Imajo¹), Yoshizumi Miyoshi¹), Iku Shinohara⁴)

¹⁾ISEE, Nagoya Univ.,²⁾University of Tokyo,³⁾National Cheng Kung University,⁴⁾Japan Aerospace Exploration Agency,⁵⁾Osaka University,⁶⁾Tohoku University,⁷⁾Kanazawa University

The linkage between equatorward detachment of arc from the auroral oval and magnetospheric processes remains poorly understood mostly due to the lack of satellite measurements in the source magnetosphere at the time of arc detachment. Recently several studies have shown that there is a common features of equatorward arc detachment from the main auroral oval for Stable Auroral Red (SAR) arcs (e.g., Shiokawa et al., AIP, 2009; EPS, 2017; Takagi et al., GRL, 2018) and STEVE (e.g., Gallardo-Lacourt et al., JGR, 2018). In this study, we present observations of an equatorward detachment of auroral arc from the main oval and magnetically conjugate measurements made by the Arase satellite in the inner magnetosphere. The all-sky imager at Gakona (magnetic latitude is 63.6 N), Alaska, shows the presence of auroral arc in both red- and green-line at local midnight (01-02 MLT) on 30 March 2017. The electron density derived from the Arase measurement shows that this arc occurred outside the steep plasmapause. The flux of low to medium energy electrons (10 eV-10 keV) penetrated deeper towards lower L-shells (L equal to 4.2) at the arc crossing as compared to the inner edge (L equal 4.4) of high-energy (greater than10 keV) plasma sheet electrons. We estimated auroral intensities for both red- and green-line by using Arase low-energy electron flux data. The estimated intensities show reasonable correspondence with the observed intensities. Further, we employ the simulation results of the Community Coordinated Modeling Center (CCMC), the BATSRUS+CRCM 3D MHD code to understand the connection between magnetospheric dynamics and detached auroral arc. Simulations show the build-up of higher pressure in the nightside inner magnetosphere and the inward motion of 1-10 keV energy electrons and ions from L equal to 4 to L less than 3 at 1240-1300 UT close to the time interval of the arc detachment. These findings indicate that the observed midnight arc at Gakona was associated with the localized enhancement of 10 eV-10 keV electron flux just inside the inner edge of the electron plasma sheet. We will discuss underlying possible mechanisms that can create such localized enhancement of electrons inside the inner edge of the electron plasma sheet.

The linkage between equatorward detachment of arc from the auroral oval and magnetospheric processes remains poorly understood mostly due to the lack of satellite measurements in the source magnetosphere at the time of arc detachment. Recently several studies have shown that there is a common features of equatorward arc detachment from the main auroral oval for Stable Auroral Red (SAR) arcs (e.g., Shiokawa et al., AIP, 2009; EPS, 2017; Takagi et al., GRL, 2018) and STEVE (e.g., Gallardo-Lacourt et al., JGR, 2018). In this study, we present observations of an equatorward detachment of auroral arc from the main oval and magnetically conjugate measurements made by the Arase satellite in the inner magnetosphere. The all-sky imager at Gakona (magnetic latitude is 63.6 N), Alaska, shows the presence of auroral arc in both red- and green-line at local midnight (01-02 MLT) on 30 March 2017. The electron density derived from the Arase measurement shows that this arc occurred outside the steep plasmapause. The flux of low to medium energy electrons (10 eV-10 keV) penetrated deeper towards lower L-shells (L equal to 4.2) at the arc crossing as compared to the inner edge (L equal 4.4) of high-energy (greater than10 keV) plasma sheet electrons. We estimated auroral intensities for both red- and green-line by using Arase low-energy electron flux data. The estimated intensities show reasonable correspondence with the observed intensities. Further, we employ the simulation results of the Community Coordinated Modeling Center (CCMC), the BATSRUS+CRCM 3D MHD code to understand the connection between magnetospheric dynamics and detached auroral arc. Simulations show the build-up of higher pressure in the nightside inner magnetosphere and the inward motion of 1-10 keV energy electrons and ions from L equal to 4 to L less than 3 at 1240-1300 UT close to the time interval of the arc detachment. These findings indicate that the observed midnight arc at Gakona was associated with the localized enhancement of 10 eV-10 keV electron flux just inside the inner edge of the electron plasma sheet. We will discuss underlying possible mechanisms that can create such localized enhancement of electrons inside the inner edge of the electron plasma sheet.