R005-40 Zoom meeting C : 11/2 PM1 (13:45-15:30) 14:15~14:30

地磁気静穏時に発生した pseudo breakup における電離圏変動に対する熱圏風変動

#大山 伸一郎^{1,4)},Heikki Vanhamaki²⁾,Cai Lei²⁾,Anita Aikio²⁾,Rietveld Michael³⁾,小川 泰信⁴⁾,Raita Tero⁵⁾,Kellinsalmi Mirjam⁶⁾,Kauristie Kirsti⁶⁾,Kozelov Boris⁷⁾,新堀 淳樹 ¹⁾,塩川 和夫 ¹⁾,津田 卓雄 ⁸⁾,坂野井 健 ⁹⁾ (¹ 名大 ISEE,⁽²Univ. Oulu,⁽³EISCAT,⁽⁴ 極地研,⁽⁵SGO, Univ. Oulu,⁽⁶FMI,⁽⁷PGI,⁽⁸ 電通大,⁽⁹ 東北大・理・PPARC

Thermospheric wind response to ionospheric variations at a pseudo breakup during geomagnetically quiet conditions

#Shin ichiro Oyama^{1,4)}, Heikki Vanhamaki²⁾, Lei Cai²⁾, Anita Aikio²⁾, Michael Rietveld³⁾, Yasunobu Ogawa⁴⁾, Tero Raita⁵⁾, Mirjam Kellinsalmi⁶⁾, Kirsti Kauristie⁶⁾, Kozelov Boris⁷⁾, Atsuki Shinbori¹⁾, Kazuo Shiokawa¹⁾, Takuo Tsuda⁸⁾, Takeshi Sakanoi⁹⁾
⁽¹ISEE, Nagoya Univ., ⁽²Univ. Oulu, ⁽³EISCAT, ⁽⁴NIPR, ⁽⁵SGO, Univ. Oulu, ⁽⁶FMI, ⁽⁷PGI, ⁽⁸UEC, ⁽⁹PPARC, Grad. School of Science, Tohoku Univ.

Thermospheric wind response at F-region altitude to a sudden westward turning of the ion velocity at high latitude was studied by analyzing data obtained during a conjunction event with Fabry-Perot interferometer (FPI; 630 nm), Dynasonde and Swarm A/C satellites in northern Scandinavia. The event was found during a period of geomagnetically quiet conditions with Kp of 0 to 1 through the night, but some auroral activity in the north. From the Swarm measurement, the ionospheric trough was identified at 70-72N. The collocated FPI and Dynasonde measured thermospheric winds (U) and ionospheric plasma velocities (V), respectively, at the equatorward edge of the trough. A notable scientific message that was revealed by this study is a possible role of the thermospheric wind in the energy dissipation process. Negative $U \cdot V$ indicates that kinetic energy of the thermosphere is dissipated into the ionosphere by particle collisions, and this can occur when the thermospheric wind is not able to follow instantly a sudden V change due to inertia. At a pseudo breakup during the conjunction event, the Dynasonde-measured V suddenly changed the direction from eastward to westward within 10 min. The FPI-measured U was also accelerated westward after the pseudo breakup, but its development was more gradual than that of V, so that U remained eastward for a while after the pseudo breakup. During this transition interval of about 10 min, $U \cdot V$ was negative. An irresistible force of the thermosphere is cleature at the substorm onset. Sign of $U \cdot V$ may be used as the indicator to find time and location where the thermospheric feature at the substorm onset. Sign of $U \cdot V$ may be used as the indicator to find time and location where the thermospheric inertia plays a role in the energy dissipation process.