R006-35 Zoom meeting B : 11/2 PM1 (13:45-15:30) 14:00~14:15

Measurements of nongyrotropic electrons around the cyclotron resonance velocity in whistler-mode waves

#Naritoshi Kitamura¹), Takanobu Amano²), Yoshiharu Omura³), Scott Boardsen^{4,5}), Daniel J. Gershman⁴), Masahiro Kitahara⁷), Satoko Nakamura⁸), Masafumi Shoji⁷), Yoshizumi Miyoshi⁷), Yuto Katoh⁹), Hirotsugu Kojima¹⁰), Yoshifumi Saito¹¹), Masafumi Hirahara¹²), Shoichiro Yokota¹³), Barbara L. Giles⁶), William R. Paterson⁴), Craig J. Pollock¹⁴), Olivier Le Contel¹⁵), Christopher Russell¹⁶), Robert J. Strangeway¹⁷), Narges Ahmadi¹⁸), Per-Arne Lindqvist¹⁹), Robert E. Ergun¹⁸
⁽¹The University of Tokyo, ⁽²The University of Tokyo, ⁽³RISH, Kyoto Univ., ⁽⁴NASA/GSFC, ⁽⁵Partnership for Heliophys. and Space Env. Res., Univ. of Maryland in Baltimore County, ⁽⁶NASA/GSFC, ⁽⁷ISEE, Nagoya Univ., ⁽⁸ISEE, Nagoya Univ., ⁽¹⁰Osaka

Univ.,¹⁹Dept. Geophys., Grad. Sch. Sci., Tohoku Univ.,¹⁰RISH, Kyoto Univ.,¹¹ISAS,¹²ISEE, Nagoya Univ.,¹³Osaka Univ.,¹⁴Denali Scientific,¹⁵LPP, CNRS,¹⁶Dept. of Earth, Planet. Space Sci., UCLA,¹⁷Dept. of Earth, Planet. Space Sci., UCLA,¹⁸LASP, Univ. of Colorado, Boulder,¹⁹Royal Institute of Technology, Sweden,²⁰SWRI

The interaction between the electromagnetic field and charged particles is central for the collisionless plasma dynamics in space. Whistler-mode waves are one of the electromagnetic plasma waves, which play important roles in efficient pitchangle scattering and acceleration of electrons in solar wind, collisionless shock waves as well as planetary magnetospheres. The nonlinear wave-particle interaction theory for coherent large amplitude waves predicts that electrons around resonance velocities exhibit nongyrotropy due to the trapping motion around them and the nongyrotropic electrons exchange energy and momentum with the waves in the presence of an appropriate inhomogeneity. In this presentation, we show observational results of nongyrotropic electrons around the cyclotron resonance velocity using the data obtained by the Magnetospheric Multiscale (MMS) spacecraft during a whistler-mode wave (about 200 Hz) event around the magnetosheath-side separatrix of the dayside magnetopause reconnection. On the basis of measurements by the Fast Plasma Investigation Dual Electron Spectrometer (FPI-DES) and the search-coil magnetometer (SCM), the relative phase angle of the electron hole to the magnetic field of the whistler-mode wave agrees well with the prediction by the nonlinear theory, and this type of the electrons appeared only around the cyclotron resonance velocity. The electron flux at the hole was about 40% lower than that at the peak in the most pronounced case. This result provides evidence of locally ongoing nonlinear wave-particle interaction between the electrons and whistler-mode waves, and proves that the nonlinear wave growth occurs around the dayside reconnection.