R006-61 **Zoom meeting B**: 11/4 PM2 (15:45-18:15) 16:15~16:30 ## 2018 年 12 月 28 日の地上 EMCCD カメラとあらせ衛星の共役観測に基づく Pi2 波とイオン振動とオーロラ光振動との対応関係 #陳 リウェイ 1 , 塩川 和夫 2 , 三好 由純 3 , 大山 伸一郎 3 , 田 采祐 4 , 小川 泰信 5 , 細川 敬祐 6 , 風間 洋一 7 , Wang Shiang-Yu⁸, Tam S. W. Y.⁹, Chang T. F.⁹, Wang B.-J.¹⁰, 浅村 和史 11 , 笠原 慧 12 , 横田 勝一郎 13 , 堀 智昭 3 , 桂華 邦裕 14 , 笠羽 康正 15 , 熊本 篤志 16 , 土屋 史紀 16 , 小路 真史 3 , 笠原 禎也 17 , 松岡 彩子 18 , 篠原 育 19 , 今城 峻 20 (1 宇地研, $^{(2}$ 名大宇地研, $^{(3}$ 名大 ISEE, $^{(4}$ 名大 ISEE 研, $^{(5)}$ 極地研, $^{(6)}$ 電通大, $^{(7}$ ASIAA, $^{(8)}$ 中央研究院天文及天文物理研究 所, $^{(9)}$ 台湾・國立成功大学, $^{(10)}$ ASIAA, Taiwan, $^{(11)}$ 宇宙研, $^{(12)}$ 東京大学, $^{(13)}$ 大阪大, $^{(14)}$ 東北大・理, $^{(15)}$ 東北大・理, $^{(16)}$ 東北大・理・惑星プラズマ大気, $^{(17)}$ 金沢大, $^{(18)}$ 京都大学, $^{(19)}$ 宇宙研/宇宙機構, $^{(20)}$ 名大・ISEE ## Correspondence of Pi2 pulsations, ion pressure fluctuations, and aurora luminosity measured by a conjugate observation #Liwei Chen¹⁾, Kazuo Shiokawa²⁾, Yoshizumi Miyoshi³⁾, Shin ichiro Oyama³⁾, ChaeWoo Jun⁴⁾, Yasunobu Ogawa⁵⁾, Keisuke Hosokawa⁶⁾, Yoichi Kazama⁷⁾, Shiang-Yu Wang⁸⁾, S. W. Y. Tam⁹⁾, T. F. Chang⁹⁾, B.-J. Wang¹⁰⁾, Kazushi Asamura¹¹⁾, Satoshi Kasahara¹²⁾, Shoichiro Yokota¹³⁾, Tomoaki Hori³⁾, Kunihiro Keika¹⁴⁾, Yasumasa Kasaba¹⁵⁾, Atsushi Kumamoto¹⁶⁾, Fuminori Tsuchiya¹⁶⁾, Masafumi Shoji³⁾, Yoshiya Kasahara¹⁷⁾, Ayako Matsuoka¹⁸⁾ (¹ISEE, ²ISEE, Nagoya Univ., ³ISEE, Nagoya Univ., ⁴ISEE, Nagoya Univ., ⁵NIPR, ⁶UEC, ⁷ASIAA, ⁸Institute of Astron- ⁽¹ISEE, ⁽²ISEE, Nagoya Univ., ⁽³ISEE, Nagoya Univ., ⁽⁴ISEE, Nagoya Univ., ⁽⁵NIPR, ⁽⁶UEC, ⁽⁷ASIAA, ⁽⁸Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan, ⁽⁹PSSC, NCKU, Taiwan, ⁽¹⁰ASIAA, Taiwan, ⁽¹¹ISAS/JAXA, ⁽¹²The University of Tokyo, ⁽¹³Osaka Univ., ⁽¹⁴University of Tokyo, ⁽¹⁵Tohoku Univ., ⁽¹⁶Planet. Plasma Atmos. Res. Cent., Tohoku Univ., ⁽¹⁷Kanazawa Univ., ⁽¹⁸Kyoto University, ⁽¹⁹ISAS/JAXA, ⁽²⁰ISEE, Nagoya Univ.)</sup> While many substrom-related observations were made, few conjugate observations of substrom auroral arcs have been reported particularly on such arcs connecting to in the inner magnetosphere at L~5. In this presentation, we show a substorm event where the footprint of the Arase satellite was located equatorward (earthward in the equatorial magnetosphere) of the a brightening arc at L⁵. The event was observed on December 28, 2018. The ground-based electron-multiplying chargecoupled device (EMCCD) camera at Gakona (62.39oN, 214.78oE), Alaska observed the substorm auroral break-up at ~0743 UT, while the Arase satellite just equatorward of the brightening arc observed a series of quasi-periodic variations in the electric and magnetic field and medium-energy ion spectra with periods of ~100-300 s when the auroral break-up happened. Ground-based magnetometers over North American continent and Hawaii observed Pi2 pulsations with periods of ~110 s. The Pi2 pulsations at high latitudes present approximately one-to-one correspondence with the oscillation of the substorm aurora brightness, suggesting that high-latitude Pi2 oscillations are caused by field-aligned current oscillations. Another correlation between the variation in plasma sheet ion pressure and the luminosity of the substorm brightening arc was also identified. This may indicate that the field-aligned current oscillation is caused by the pressure oscillation of the plasma sheet ions. The amplitude of the filtered ion pressure variation is several times larger than that of the filtered magnetic pressure, suggesting a pressure-driven instability plays a role in the formation of these oscillations and substorm brightening arc in this event. Through this event we will present the relationship between the auroral arc evolution on the ionosphere and the source wave and particle features in the magnetosphere on the basis of these measurements at just earthward of the brightening arc.