Observation Capability of a Ground-based Terahertz Radiometer in Martian atmosphere

#Takayoshi Yamada¹⁾,Philippe Baron⁶⁾,Lori Neary⁴⁾,Toshiyuki Nishibori²⁾,Richard Larsson⁵⁾,Takeshi Kuroda³⁾,Frank Darden⁴⁾, Yasuko Kasai¹⁾

⁽¹NICT, ⁽²JAXA, ⁽³Tohoku Univ., ⁽⁴Belgian Institute for Space Aeronomy, ⁽⁵Max Planck Institute for Solar System Research, ⁽⁶Osaka University

We present expected performance for a ground-based Terahertz (THz) radiometer, plan to be launched on the TEREX-1 (TERahertz EXplore-1) Mars exploration micro spacecraft.

The small THz passive radiometer has been developed for the TEREX series of future micro spacecrafts.

This spacecraft is an opportunity for organizations with limited resources and technology to conduct frequent missions to Mars well suited for resource exploration in contrast to all of the current and past Mars missions of large/giant class missions with fully government lead.

The observation frequencies of TEREX-1 radiometer are 474.64 to 475.64 and 486.64 to 487.64GHz with 100 kHz resolution, and the double-sideband noise temperature less than 3000 K.

A theoretical error analysis is performed with the instrument characteristics to assess for the first time up-looking observations of atmospheric Oxygen molecules (O_2) and water vapor (H_2O) .

Measurement errors for O_2 and H_2O are 7 to 22% and 14 to 25% with 8 to 17 km and 5 to 10 km vertical resolution in the vertical ranges 0 to 55 km and 0 to 25 km, respectively.

TEREX-1 is also capable to measure minor species, O_3 and H_2O_2 , with a precision better than 30% within two independent layers.

We used the integration time of 1 hour for all simulations.

Our theoretical simulation showed the instrument characteristics of the TEREX-1 sensor is able to observe vertical profiles of O_2 and H_2O abundances with the same level of the large class missions.