\＃チャクラボルティ 芝地 ${ }^{1)}$ ，西谷 望 ${ }^{2)}$ ，Baker Joseph．B．H．${ }^{3)}$ ，Ruohoniemi John M．${ }^{4)}$
（1 バージニア工科大学，${ }^{2}$ 名大 ISEE，${ }^{(3}$ Space＠VT，${ }^{4}$ バージニア工科大

Solar Flare effects on the High Latitude Electrodynamics

\＃Shibaji Chakraborty ${ }^{1)}$ ，Nozomu Nishitani ${ }^{2)}$ ，Joseph B．H．Baker ${ }^{3)}$ ，John M．Ruohoniemi ${ }^{4)}$
${ }^{(1}$ Virginia Tech，${ }^{(2}$ ISEE，Nagoya Univ．，${ }^{(3}$ Space＠VT，${ }^{4}$ ECE，Virginia Tech，

A solar flare is a space weather event that causes a transient in the ionospheric system at sub－auroral，middle，and lower latitudes，commonly known as the solar flare effect（SFE）．However，flare peaking beyond X－class or higher can impact current systems at auroral and polar latitudes．Using ground－based radars and magnetometers located in high latitude North American sectors，we conducted an event study on the X9．3 flare on 6 September 2017．We found：（i）SuperDARN radar located at Saskatoon（auroral latitude，dawn sector）observed a sudden appearance of ionospheric scatter following the flare； （ii）SuperDARN Inuvik radar，located at polar latitude，recorded a sudden reduction in plasma flow velocity；（iii）significant enhancement in geomagnetic field intensity observed by ground magnetometers，which lasted about 3－hours；（iv）several SuperDARN radars located at the nightside also recorded a change in plasma convection．Apparently，the sudden appearance of ionospheric irregularity structures near auroral latitudes－dawn sector and the change in nightside ionospheric plasma flow at auroral latitudes are related to a change in the ionospheric Hall／Pederson conductivity and current system．In addition，the longer lasting intense geomagnetic field variations detected by the magnetometer stations suggest a change in the day－night ionospheric current system．Finally，the reduction in plasma flow velocity observed by a polar latitude radar is predominantly driven by the reduction in efficiency of mechanical energy conversion in the dayside solar wind－magnetosphere－ionosphere （SW－M－I）interaction．This work demonstrates flare effects on auroral currents，nightside effects，and a reconfiguration of MI coupling morphology．

