R005-P04 ポスター3:11/6 AM1/AM2(9:00-12:30)

#浅村 和史¹⁾, 滑川 拓²⁾, 横田 勝一郎³⁾, 小嶋 浩嗣⁴⁾, 栗田 怜⁵⁾, 頭師 孝拓⁶⁾, 石坂 圭吾⁷⁾, 熊本 篤志⁸⁾, 松 岡 彩子⁹⁾, 野村 麗子¹⁰⁾, 齋藤 義文¹¹⁾ ⁽¹宇宙研,⁽²東大・理・地惑,⁽³大阪大,⁽⁴京大・生存圏,⁽⁵京都大学生存研,⁽⁶奈良高専,⁽⁷富山県大・工,⁽⁸東北大・理・惑 星プラズマ大気,⁽⁹京都大学,⁽¹⁰JAXA,⁽¹¹宇宙研

Supra-thermal ions observed by TSA/IMS onboard the SS520-3 sounding rocket

#Kazushi Asamura¹), Taku Namekawa²), Shoichiro Yokota³), Hirotsugu Kojima⁴), Satoshi Kurita⁵), Takahiro Zushi⁶), Keigo Ishisaka⁷), Atsushi Kumamoto⁸), Ayako Matsuoka⁹), Reiko Nomura¹⁰), Yoshifumi Saito¹¹)
⁽¹ISAS/JAXA, ⁽²Earth and Planetary Science, Tokyo Univ., ⁽³Osaka Univ., ⁽⁴RISH, Kyoto Univ., ⁽⁵RISH, Kyoto Univ., ⁽⁶National Institute of Technology, Nara Col, ⁽⁷Toyama Pref. Univ., ⁽⁸Planet. Plasma Atmos. Res. Cent., Tohoku Univ., ⁽⁹Kyoto

University,⁽¹⁰JAXA,⁽¹¹ISAS)</sup>

On November 4th, 2021, the SS520-3 sounding rocket was launched from Ny Alesund, Spitsbergen, Norway during a severe geomagnetic storm. The main objective of the SS520-3 mission is to reveal ion acceleration mechanisms as a source of ion outflow in the magnetospheric cusp region. It was confirmed that the rocket passed through the cusp region based on the observations of low-energy ions. Two ion energy-mass spectrometers were installed onboard SS520-3. One is Thermal and Supra-thermal ion energy-mass Analyzer (TSA), and the other is low-energy Ion energy-Mass Spectrometer (IMS). These two instruments jointly observe ions with energies from <1eV/q up to 20 keV/q with species identification, which covers higher-energy component of accelerated ions in the polar ionosphere. During the flight, TSA/IMS successfully observed cusp ion precipitations which are continuously detected. On the other hand, upgoing ion flux were minor, but weak flux enhancement was observed with energies from 1 to 10 keV/q in perpendicular direction throughout the flight. It might be an indication of the upflowing ions, since they are considered to be accelerated in the perpendicular direction by wave-particle interactions. We will report on the observations and the initial results regarding TSA/IMS.