R006-28 A 会場 :11/7 AM2 (10:45-12:30) 11:00~11:15

#栗田 怜¹⁾, 三好 由純²⁾, 齊藤 慎司³⁾, 加藤 雄人⁴⁾, 松田 昇也⁵⁾, 笠原 慧⁶⁾, 横田 勝一郎⁷⁾, 笠原 禎也⁸⁾, 松 岡 彩子⁹⁾, 篠原 育¹⁰⁾ (¹ 京都大学 生存研,⁽² 名大 ISEE,⁽³ 情報通信研究機構,⁽⁴ 東北大・理・地球物理,⁽⁵ 金沢大学,⁽⁶ 東京大学,⁽⁷ 大阪大,⁽⁸ 金沢 大,⁽⁹ 京都大学,⁽¹⁰ 宇宙研/宇宙機構

High temporal variation in electron fluxes during flux burst events observed by the Arase satellite

#Satoshi Kurita¹⁾, Yoshizumi Miyoshi²⁾, Shinji Saito³⁾, Yuto Katoh⁴⁾, Shoya Matsuda⁵⁾, Satoshi Kasahara⁶⁾, Shoichiro Yokota⁷⁾, Yoshiya Kasahara⁸⁾, Ayako Matsuoka⁹⁾, Iku Shinohara¹⁰⁾

⁽¹RISH, Kyoto Univ.,⁽²ISEE, Nagoya Univ.,⁽³NICT,⁽⁴Dept. Geophys., Grad. Sch. Sci., Tohoku Univ.,⁽⁵Kanazawa Univ.,⁽⁶The University of Tokyo,⁽⁷Osaka Univ.,⁽⁸Kanazawa Univ.,⁽⁹Kyoto University,⁽¹⁰ISAS/JAXA

We examine the high temporal variation in electron fluxes during flux burst events observed by Medium Energy Particle experiment-electron analyzer (MEP-e) onboard the Arase satellite. The flux burst event is characterized by a flux increase of 17-30 keV electrons within 30 seconds at an oblique (60-80 degrees) pitch angle range, which is accompanied by a decrease in electron fluxes at lower energy and pitch angle ranges [Kurita et al., 2018]. The rapid flux variation is observed in association with the appearance of intense upper-band chorus emissions. It is suggested that the nonlinear wave-particle interaction between electrons and the upper-band chorus is a plausible mechanism of the flux variation. The importance of the nonlinear wave-particle interaction is examined by a test-particle simulation, and it is found that the acceleration through nonlinear phase-trapping is essential to cause the rapid flux increase [Saito et al., 2021]. It is of interest to further examine whether signatures of nonlinear electron acceleration are captured by MEP-e during the flux burst event. The flux burst event was analyzed using the MEP-e data with a time resolution of ~8 seconds (1 spin period). On the other hand, MEP-e has the capability to derive pitch angle distributions every 250ms because of its 2-pi radian disk-like field-of-view and measurement scheme. Using the pitch angle distribution with the high temporal resolution, we investigate sub-second flux variations during the flux burst event in detail. We find that the flux increase consists of two components: one is the almost same increase as the 1-spin average increase, and the other is a much larger flux increase than the 1-spin average. The larger increase is less frequently observed compared to the smaller one. Thus the larger flux increase does not significantly contribute to the 1-spin averaged flux variation. It is possible that the large flux increase seen in the 250-ms MEP-e data is a signature of electron acceleration through nonlinear wave-particle interactions. It is suggested that this possibility can be investigated by performing a virtual observation in a test-particle simulation.