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Ducted propagation of whistler mode chorus waves observed by the Arase satellite
near the plasmapause at high latitudes
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Whistler mode chorus is a type of plasma waves generated near the geomagnetic equator by wave-particle interactions.
Chorus scatters pitch angle of energetic electrons and causes the electrons to precipitate into the atmosphere. The resonance
energy of electrons becomes higher as the wave propagates at higher latitudes, resulting in the scattering of relativistic
electrons into the loss cone. Thus, the propagation of chorus is of great importance for the generation of microbursts and
resultant loss of radiation belt electrons. The loss of radiation belt electrons results in significant ionization of the upper
atmosphere as well as an impact on the middle atmosphere. The mechanism of the chorus propagation from the equator to
higher latitudes has not been clarified. One of the most promising theories is the propagation along a field-aligned density
duct. However, only a few observations of chorus propagating in duct structures have been reported [Chan et al. 2021, Haque
et al. 2011, Moullard et al. 2002]. In this study, we report on chorus propagating in duct structures observed by the Arase
satellite near the plasmapause at the geomagnetic latitude of >10°.

During the period from April to July in 2017 and 2018, we identified 23 cases of chorus propagating in the duct-like
structure near the plasmapause with Plasma Wave Experiment (PWE) / Onboard Frequency Analyzer (OFA). We examined
properties of the chorus for three cases: (1) a duct-like structure characterized by density enhancement at geomagnetic
latitude of -14° and Mcllwain L of 4.2 at 11:30 UT, June 6, 2018, (2) density depression, geomagnetic latitude of -14.2° and
Mcllwain L of 4.3 at 11:32 UT, June 6, 2018, (3) density depression, geomagnetic latitude of 32.2° and Mcllwain L of 4.6 at
02:52 UT, July 14, 2017.

We estimated the wave normal angles (WNAs) using the Singular Value Decomposition (SVD) method [Santolik et al.,
2003] with the assumption on the presence of a single plane wave. We used the background magnetic vector observed by
Magnetic Field Experiment (MGF), the spectral matrix of the magnetic field component of chorus observed by OFA for the
estimation using the SVD method. We obtained a theoretical relation between the wave frequency and the electron density
which satisfies the Snell’s law and the dispersion relation with the quasi-longitudinal approximation using the WNAs. We
compared the theoretical relation with the observed electron density and the chorus frequency range.

The observational results for each case are as follows. (1) The WNAs were concentrated around 0 deg. The observed
chorus was LBC that was consistent with the dispersion relation with WNA=0 deg. (2) The WNAs were scattered around 0
deg - Gendrin angle(0 ). The observed chorus was LBC that was consistent with the dispersion relation with WNA=0
deg -6 . (3) The WNAs were concentrated around 6 . The observed chorus was LBC that was consistent with the
dispersion relation between WNA=0 deg and WNA=0 . We examined other events in the same way and identified 10, 11,
and 2 events in total which were categorized as cases (1), (2), and (3), respectively.

We interpreted each result based on ducting theory. Case (1) was consistent with the ducting theory for the LBC
propagating along the density enhancement with WNA of around O deg, Case (2) the ducting theory along the density
depression with WNAs distributed between 0 deg and 0 , and Case (3) the ducting theory along the density depression
with WNAs of around 6 . We discuss the planarity of the observed chorus waves derived from the SVD method. The
planarity close to 1 means that the wave can be regarded as a single plane wave. For Case (1), the planarity of the observed
chorus was about 0.8. For Cases (2) and (3), the planarity of the observed chorus was about 0.3 — 0.6, similar value to the
background noise floor. Therefore, the WNAs are not reliable. There are two possibilities for the low planarity. Based on



the ducting theory, LBC ducting along the density depression could have wide WNA. If chorus waves with various WNAs
coexist, the planarity is evaluated to low. The planarity is evaluated to be a lower value if the amplitude of the observed
chorus is not large enough compared to the noise floor.

To investigate characteristics of the low planarity in the density depression duct, we plan to perform detailed analysis for
ducted chorus events for which waveform data observed by PWE/Waveform Capture (WFC) is available.
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