R006-P21 ポスター1:11/4 PM1/PM2(13:45-18:15)

#田 采祐¹⁾, 三好 由純¹⁾, 堀 智昭¹⁾, 中村 紗都子¹⁾, 小路 真史¹⁾, Kistler Lynn^{1,2)}, Yue Chao³⁾, Bortnik Jacob⁴⁾, 浅村 和史⁵⁾, 横田 勝一郎⁶⁾, 笠原 慧⁷⁾, 桂華 邦裕⁷⁾, 篠原 育⁵⁾, 松岡 彩子⁸⁾, Lyons Larry⁴⁾ (¹ 名大 ISEE 研, ⁽²University of New Hampshire, ⁽³Institute of Space Physics and Applied Technology, Peking University, Beijing, China, ⁽⁴UCLA, ⁽⁵ 宇宙研, ⁽⁶ 大阪大, ⁽⁷ 東京大学, ⁽⁸ 京都大学

A statistical study of energetic ions (H+, He+, and O+) in the inner magnetosphere using the Arase satellite observations

#ChaeWoo Jun¹, Yoshizumi Miyoshi¹, Tomoaki Hori¹, Satoko Nakamura¹, Masafumi Shoji¹, Lynn Kistler^{1,2}, Chao Yue³, Jacob Bortnik⁴, Kazushi Asamura⁵, Shoichiro Yokota⁶, Satoshi Kasahara⁷, Kunihiro Keika⁷, Iku Shinohara⁵, Ayako Matsuoka⁸, Larry Lyons⁴

⁽¹ISEE, Nagoya Univ.,⁽²University of New Hampshire,⁽³Institute of Space Physics and Applied Technology, Peking University, Beijing, China,⁽⁴UCLA,⁽⁵ISAS/JAXA,⁽⁶Osaka Univ.,⁽⁷The University of Tokyo,⁽⁸Kyoto University

We perform a statistical study of energetic ions (H+, He+, and O+) in the inner magnetosphere depending on geomagnetic conditions using the Arase satellite observations from March 2017 to December 2021. We used a combined dataset for ions (LEPi and MEPi) onboard the Arase satellite with a combined energy range of 0.01-187 keV. In order to examine the spatial distributions of energetic ions depending on geomagnetic conditions, the energy fluxes for all species were sorted by the magnetic local time (MLT), L*shell, energy, and three Kp steps (quiet: Kp<1, intermediate: Kp=1-3, disturbed: Kp>3). Overall, all ion species showed similar spatial distributions. Taking a close look at the resultant L*-energy and L*-MLT spectra, we can find four distinct H+ populations within different energy ranges: (1) plasmaspheric H+ (E < 30 eV) at L < 5, (2) warm plasma cloak at energies of several tens eV - several keV, (3) the ring current population (E = 1 keV - several tens of keV) with nose structures, (4) high-energy ring current particles (E > 30 keV) with symmetric distributions in MLT, and these populations exhibited different behaviors as Kp increases. At E=0.05-1 keV, other heavy ions (He+ and O+) show higher energy fluxes near the earth region (L*2) and the energy flux has the tendency that keeps decreasing as L*increases. On the other hand, H+ exhibits significant energy flux variations inside and outside the plasmasphere, and a higher energy flux of H+ appears outside the plasmasphere. Ion nose structures appeared at energies of ~several keV in the noon and dusk sectors. These structures showed inner boundaries at different L*locations for different ion species (L*4 for H+, L*2 for He+ and O+). The difference in L*is due to a longer charge exchange lifetime for heavy ions as compared to that for H+. We discuss the underlying physical dynamics and the possible origins of the different populations and compare the observational results with a model calculation using simple electric and magnetic fields.