#村上 豪¹⁾, 土屋 史紀²⁾, 鍵谷 将人³⁾, 山崎 敦¹⁾, 吉岡 和夫⁴⁾, 木村 智樹⁵⁾, 桑原 正輝⁶⁾, 塩谷 圭吾¹⁾, 松田 昇也⁷⁾

⁽¹JAXA/ISAS,⁽² 東北大・理・惑星プラズマ大気,⁽³ 東北大・理・惑星プラズマ大気研究センター,⁽⁴ 東大・新領域,⁽⁵Tokyo University of Science,⁽⁶Rikkyo Univ.,⁽⁷ 金沢大学,⁽⁸ 宇宙研,⁽⁹ 金沢大学

Next UV space telescope, LAPYUTA: instrument overview and technical developments

#Go Murakami¹), Fuminori Tsuchiya²), Masato Kagitani³), Atsushi Yamazaki¹), Kazuo Yoshioka⁴), Tomoki Kimura⁵), Masaki Kuwabara⁶), Keigo Enya¹), Shoya Matsuda⁷)

⁽¹JAXA/ISAS, ⁽²Planet. Plasma Atmos. Res. Cent., Tohoku Univ., ⁽³PPARC, Tohoku Univ., ⁽⁴The Univ. of Tokyo, ⁽⁵Tokyo University of Science, ⁽⁶RIkkyo Univ., ⁽⁷Kanazawa Univ., ⁽⁸JAXA/ISAS, ⁽⁹Kanazawa Univ.)

The Life-environmentology, Astronomy, and PlanetarY Ultraviolet Telescope Assembly (LAPYUTA) mission aims to carry out spectroscopy with a large effective area (>300 cm2) and a high spatial resolution (0.1 arc-sec) and imaging with a wide field of view in an ultraviolet spectral range (110-190 nm) from a space telescope. The main part of the science payload is a Cassegrain-type telescope with a 60 cm-diameter primary mirror. Two main instruments are installed on the focal plane of the telescope: a spectrometer and a UV slit imager. The spectrometer contains a movable slit with different slit width, a holographic toroidal grating with 2000 lines/mm, and an MCP detector coupled with CMOS imaging sensors. Spectral resolution of <0.01 nm and field-of-view of 100 arc-sec will be achieved. A UV slit imager consists of imaging optics, several bandpass filters with a wheel, and a same type of UV detector as the one installed in the spectrometer. In order to achieve a high spatial resolution of 0.1 arc-sec, we will install a target monitoring camera at 0th order position inside the spectrometer and slit imager for both attitude control and image accumulation process. We are studying the concept of LAPYUTA and preparing a proposal of it to JAXA's M-class category. Here we present the updated LAPYUTA concept design, the overview of the spacecraft and instruments, and the status of technical developments.