#凡 雨萌¹⁾, 松清 修一²⁾, 銭谷 誠司³⁾, 森田 太智⁴⁾ (¹九州大学, ⁽²九大・総理工, ⁽³神戸大学, ⁽⁴九大総理工)

Mass ratio dependence of microinstability in a magnetic island formed through magnetic reconnection

#yumeng fan¹), Shuichi Matsukiyo²), Seiji Zenitani³), Taichi Morita⁴) (¹Kyushu Univ., (²Kyushu Univ., (³Kobe U, (⁴Faculty of Eng. Sci., Kyushu Univ.,

Magnetic reconnection is known as an explosive event through which magnetic energy is rapidly converted into the kinetic energy of a plasma. It occurs when anti-parallel magnetic field configuration accompanying a current sheet is realized. When there are two X-lines, a magnetic island is formed so that the particles accelerated near the X-lines are trapped in it. It is known that the accelerated particles drive instabilities inside a magnetic island leading to further acceleration and/or heating. Electron Weibel instability was discussed in Lu et al. (2011) as a mechanism of an instability seen inside a magnetic island in their simulation. However, parameter dependence of the instability has not been studied so far. We investigate the nature of instabilities in a magnetic island especially focusing on ion to electron mass ratio dependence by performing two-dimensional particle-in-cell simulations.