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Magnetic and gravity joint inversion for obtaining highly correlated density-
magnetization models using group lasso reguralization

#Mitsuru Utsugi®)
(1 Aso Volcanological Laboratory, Kyoto University

The magnetic and gravity surveys are powerful methods for obtaining information of the subsurface structure, and both
are highly compatible with each other based on potential theory. Thus, many studies have been focued on the gravity and
magnetic joint inversion.

In such studies, it is often apply the constraint that the density structure obtained from the gravity data to be correlated
with the magnetization structure obtained from the magnetic field data, and recent studies used the methods such as cross
gradient, fuzzy c-means method, and correspondence maps etc. for this purpose. In these analyses, the subsurface is divided
into small block cells, and the density and magnetization of each cell are calculated.

In out study, we attempted to introduce a regularization method called ”group lasso” in the joint inversion of magnetic and
gravity data. The group lasso is a method in which model elements can be divided into several groups (clusters), and the
elements belonging to each group are constrained to take zero or non-zero values. Making groups (paiers) of density and
magnetization of each grid cells, we attempted to apply this group lasso method to the gravity and magnetic joint inversion.
This means that where density or magnetization takes a non-zero value, the other will also be non-zero, and conversely, if
one is zero, the other is also likely to be zero. As a result, derived density and magnetization structures are expected to have
similar shape with high correlation.

The advantages of applying group lasso method are 1) ease of implementation, and 2) the ability to impose sparsity in
addition to group effects on the model at the same time. In particular, the optimization of the nonlinear group lasso penalty
can be obtained analytically using the proximal gradient method, and thus, we can implement it with a very simple code.
Further, since the group lasso penalty is a vector version of the L1 norm penalty and it is also a sort of the sparsity promoting
penalty, it is expected that the resultant model have sparseness feature.

In this presentation, we will show the details of the calculation method as well as some examples of its application to the
synthetic tests and the real data study.
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