Es 層形成過程の中性大気とプラズマ大気の同時観測による解明: RIDE キャンペーン

 #齊藤 昭則¹⁾, 松岡 彩子²⁾, 坂崎 貴俊¹⁾, 阿部 琢美³⁾, 齋藤 義文³⁾, 石坂 圭吾⁴⁾, 田川 雅人⁵⁾, 横田 久美子
⁵⁾, 熊本 篤志⁶⁾, 小嶋 浩嗣⁷⁾, 栗田 怜⁷⁾, 横山 竜宏⁷⁾, 村田 直史⁸⁾, 斎藤 享⁹⁾, 高橋 透⁹⁾, 西岡 未知¹⁰⁾, 安藤 慧¹⁰⁾, 細川 敬祐¹¹⁾, 中田 裕之¹²⁾,Liu Huixin¹³⁾, 木暮 優¹³⁾, 西山 尚典¹⁴⁾, エジリ ミツム¹⁴⁾

⁽¹京都大・理・地球物理,⁽²京都大学,⁽³JAXA,⁽⁹電子航法研,⁽⁴富山県大・工,⁽⁵神戸大学大学院工学研究科,⁽⁶東北 大・理・地球物理,⁽⁷京都大学生存研,⁽⁸JAXA,⁽⁹電子航法研,⁽¹⁰情報通信研究機構,⁽¹¹電通大,⁽¹²千葉大・工,⁽¹³九大・ 理・地惑,⁽¹⁴極地研,⁽¹⁵NICT,⁽¹⁶九大・理・地惑,⁽¹⁷千葉大・工,⁽¹⁸電通大,⁽¹⁹極地研

Elucidation of sporadic E layers by simultaneous observation of the neutral and ionized atmospheres: RIDE rocket campaign

#Akinori Saito¹⁾, Ayako Matsuoka²⁾, Takatoshi Sakazaki¹⁾, Takumi Abe³⁾, Yoshifumi Saito³⁾, Keigo Ishisaka⁴⁾, Masato Tagawa⁵⁾, Kumiko Yokota⁵⁾, Atsushi Kumamoto⁶⁾, Hirotsugu Kojima⁷⁾, Satoshi Kurita⁷⁾, Tatsuhiro Yokoyama⁷⁾, Naofumi Murata⁸⁾, Susumu Saito⁹⁾, Toru Takahashi⁹⁾, Michi Nishioka¹⁰⁾, Satoshi Andoh¹⁰⁾, Keisuke Hosokawa¹¹⁾, Hiroyuki Nakata¹²⁾, Huixin Liu¹³⁾, Masaru Kogure¹³⁾, Takanori Nishiyama¹⁴⁾, Mitsumu K Ejiri¹⁴⁾

⁽¹Department of Geophysics, Graduate School of Science, Kyoto University,⁽²Graduate School of Science, Kyoto University,⁽³Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency,⁽⁴Faculty of Engineering, Toyama Prefectural University,⁽⁵Graduate School of Engineering, Kobe University,⁽⁶Department of Geophysics, Graduate School of Science, Tohoku University,⁽⁷Research Institute for Sustainable Humanosphere, Kyoto University,⁽⁸Japan Aerospace Exploration Agency,⁽⁹Electronic Navigation Research Institute,⁽¹⁰National Institute of Information and Communications Technology,⁽¹¹Graduate School of Informatics and Engineering, University of Electro-Communications,⁽¹²Graduate School of Engineering, Chiba University,⁽¹³Department of Earth and Planetary Science, Graduate School of Science,Kyushu University,⁽¹⁴National Institute of Polar Research,⁽¹⁵National Institute of Information and Communications Technology,⁽¹⁶Department of Earth and Planetary Sciences , Kyushu University,⁽¹⁷Department of Electrical and Electronic Engineering, Graduate School of Engineering, Chiba University,⁽¹⁸Graduate School of Communication Engineering and Informatics, Graduate School of Engineering, Chiba University,⁽¹⁸Graduate School of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, University of Electro-Communication Engineering and Informatics, Graduate School of Informatics and Engineering, University of Electro-Communication Engineering and Informatics, Graduate School of Informatics and Engineering, University of Electro-Communications,⁽¹⁹National Institute of Polar Research

Rocket Investigation of Daytime E-region (RIDE) campaign is to directly observe the neutral atmosphere, plasma atmosphere, the electric field, and the magnetic field that generates the sporadic E layer with the S-310-46 sounding rocket from Uchinoura in the summer of 2024. The objectives of this sounding rocket experiment are as follows:

(1) Elucidate phenomena in which the interaction between neutral atmosphere and plasma is important by combining direct observations by the sounding rocket with a numerical model and ground-based observations.

(2) Complete measurement packages of the neutral atmosphere, plasma, and electromagnetic fields for sounding rockets and satellites.

(3) Develop human resources for future deployment.

The daytime sporadic E layer around 100 km altitude is the target of the campaign. Elucidation of the interaction between the neutral and plasma atmospheres, which is thought to be the cause of this phenomenon, will lead to the forecast of the sporadic E layer, which has an impact on social systems such as radio propagation disturbance. Although there is a wide range of ionospheric phenomena in which the interaction between neutrals and plasma is important, their elucidation has not been sufficiently advanced due to the difficulty of simultaneous observation of both atmospheres. In this experiment, comprehensive direct measurements of the neutral atmosphere, plasma atmosphere, and electromagnetic field will be made at 90-130 km altitude during the ascent and descent of the S-310-46 rocket at 11-14 local time in summer at mid-latitudes. This local time range is when the Es layer is expected to reach an altitude of around 105 km as it develops and the interaction between the neutral and plasma atmospheres is expected to be intense. Combined with numerical model predictions, the contribution of the electric field and wind in the formation of the Es layer can be clarified. In addition to this direct measurement by the rocket, ground-based observations at multiple locations will be conducted to evaluate the temporal evolution and spatial extent of the Es layer observed by the rocket and its effect on the anomalous propagation of radio waves used in air navigation and other social systems.