R005-08 B 会場 :9/24 PM2 (15:45-18:15) 16:00~16:15

#西山 尚典¹⁾, 鍵谷 将人²⁾, 小川 泰信¹⁾, 津田 卓雄³⁾, 岩佐 祐希⁴⁾, 古舘 千力³⁾, Dalin Peter⁷⁾, Partamies Noora⁶⁾, 土屋 史紀²⁾, 野澤 悟徳⁵⁾, Sigernes Fred⁶⁾

⁽¹ 極地研,⁽² 東北大・理・惑星プラズマ大気研究センター,⁽³ 電通大,⁽⁴ 産総研・計量標準総合センター,⁽⁵ 名大・宇地 研,⁽⁶University In Centre Svalbard,⁽⁷Swedish Institute of Space Physics,⁽⁸ 東北大・理・惑星プラズマ大気

A multi-event study of auroral intensifications in N2+ (0,0) Meinel band at 1.1 um observed by the NIRAS-2 and the NIRAC

#Takanori Nishiyama¹⁾,Masato Kagitani²⁾,Yasunobu Ogawa¹⁾,Takuo Tsuda³⁾,Yuki Iwasa⁴⁾,Senri Furutachi³⁾,Peter Dalin⁷⁾,Noora Partamies⁶⁾,Fuminori Tsuchiya²⁾,Satonori Nozawa⁵⁾,Fred Sigernes⁶⁾

⁽¹National Institute of Polar Research, ⁽²Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University, ⁽³University of Electro-Communications, ⁽⁴National Metrology Institute of Japan, AIST, ⁽⁵Institute for Space-Earth Environment Research, Nagoya University, ⁽⁶University In Centre Svalbard, ⁽⁷Swedish Institute of Space Physics, ⁽⁸Planetary Plasma and Atmospheric Research Center, Graduate School of Science, Tohoku University

Dayside aurora and polar patch are the key phenomena for understanding of the dayside magnetosphere-ionosphereatmosphere coupling process. These phenomena are being monitored by ground-based optical instruments in high latitude region corresponding to polar cap and cusp, but the observations are done at limited geographic location and in limited season for avoiding strong photon intensity of sky background. Alternatively, active/passive radio remote sensing such as HF/VHF/UHF radar, GNSS and LF wave receiver are effective, but spatial and temporal resolutions by those measurements are not sufficient generally in comparison to optical measurements.

We present simultaneous observations of N_2^+ Meinel (0,0) band (hereafter, N_2^+ (M)) aurora by cutting-edge short wavelength infrared (SWIR) imaging spectrograph (NIRAS-2) and monochromatic camera (NIRAC) installed at Kjell Henriksen Observatory (78°N, 16°E). NIRAS-2 is a 2-D imaging spectrograph with a fast optical system and high spectral resolutions to challenge twilight/daytime aurora measurements from the ground. It is designed for SWIR wavelength from 1.1 to 1.3 microns in which sky background intensity is weaker than in visible subrange. In addition, NIRAC have been developed focusing on aurora emissions of N_2^+ (M). N_2^+ (M) is about two orders brighter than the N_2 1st negative band at 427.8 nm (Remick et al. 2001), which means that the band can be a good indicator of energetic electron precipitations. Total optical system is fast (F-number 1.5) and its FOV (84° x 68°) is slightly wider than that of the NIRAS-2. Thus, the NIRAC is used as a twin instrument to the NIRAS-2 to help in interpreting meridional scan data obtained from the NIRAS-2.

On January 21 2023, N_2^+ (M) intensification of associated with a band-shape aurora structure was observed by the NIRAS-2 and the NIRAC by temporal resolutions of 30 seconds and 20 seconds, respectively. Additionally, the European incoherent scatter Svalbard Radar (ESR) also observed electron density variations at the same time. Electron density measured at altitude ranges from 100 km 120 km changed in the same way as N_2^+ (M) intensity, which implies that a primary source of N_2^+ (M) emissions is direct collisions of N_2 by precipitating electrons penetrating down to around 100 km altitude (up to 10 keV). However, the observation also demonstrated moderate correlations between N_2^+ (M) intensity and electron density above 140 km, which implies that different N_2^+ (M) generation process, N_2 charge exchange with O⁺, may work up to near 160 km and make a non-negligible contribution to N_2^+ (M) emissions. This hypothesis would be verified with further radar observations or stereo imaging observations useful to estimate the vertical distribution of the emission layers.

The observed N_2^+ (M) spectrum show fine structures due to N_2^+ rotational motions and it was successfully reproduced by common molecular models for diatomics and non-linear least squares fitting. The estimated N_2^+ rotational temperature with 30-sec cadences mostly ranges from 200 to 400 K, which agrees with one in NRLMSIS 2.1 at 100 and 120 km altitude, respectively. During a period where strong aurora intensification was seen, the rotational temperature was about 210 K with an error of 15 K (1-sigma). In addition, the ESR demonstrated that a peak altitude of electron density also got down to 100 km. These results are consistent with that a center altitude of N_2^+ (M) emission layer gets lower associated with more energetic particle precipitations. In this study, further analysis results based on the above case study and several similar events will be presented.